第930章 流形分类的问题(1/4)(1 / 2)

“阿嚏!”

中山国际的别墅,坐在自己书房里,正拿着笔在书桌前写着些什么的陆舟,毫无预兆的打了个喷嚏。

“又是谁在惦记我……”

吸了吸鼻子,自言自语地嘀咕了一句,陆舟继续将目光投向了面前的草稿纸,手上的圆珠笔在桌上轻轻点着。

“有点难度啊。”

……当n大于2时两个n维复完全交X^n(d),X^n(d‘)微分同胚,当且仅当它们的Euler数、全次数和Pontrjagin类都相等。

严格意义上来讲,这不是一个复分析问题,也不是一个传统意义上的偏微分方程问题,而是一个很有意思的关于光滑流形的分类问题。

这个说法或许有些拗口,但事实上在微分拓扑学中,这却是一个还算热门的研究方向,主要研究微分流形在微分同胚映射下不变的性质。

不过有些麻烦的是,虽然陆舟对微分流形和拓扑学都很有研究,但对于微分拓扑学这个数学分支研究的却并不多。

甚至于可以说,这对他来说完全是一个全新的领域。

不过会出现这样的情况也无可厚非,毕竟这位陈阳教授研究的是霍奇猜想,和他研究的黎曼猜想原本就是两个截然不同的问题。

只是因为超椭圆曲线分析法恰好能够被改进运用对柯西-黎曼方程以及黎曼面的推广面进行研究,所以才由此引发了他对这个问题的联想……

“真是为难我胖虎啊……要不要干脆放着不管算了呢?”

思索了一会儿,陆舟摇了摇头,最终还是将这个不争气的念头赶出了大脑。

且不说说好了比一比谁先弄出来这个结果,就算没有装这个逼,面对难题临阵放弃也不是他的风格。

就算微分拓扑学不是他的研究方向,但凭借着他对微分流形以及拓扑学理论的理解,快速熟悉这个领域的研究要点还是没什么太大问题的。

更何况正好现在黎曼猜想的研究也陷入了瓶颈,与其在一条走不通的路上死磕,不如试着抬头看看周围与没有其他值得注意的线索。

如果能够在拓扑学问题和复分析问题之间架起桥梁,说不准他的超椭圆曲线分析法就能在对黎曼zeta函数的研究上发挥出奇效……

“小艾,帮我泡杯咖啡过来,不加糖的!”

小艾:主人,速溶咖啡本来就不用加糖呀?(°ー°〃)

“……啰嗦,总之帮我泡杯咖啡过来。”

好,好的主人!(???*)

无人机从书架上飘了起来,呜呜地飞去了书房外面。

抛开了心中的杂念,陆舟将全部的注意力,都集中在了面前的这张草稿纸上。

拇指顶开了扣着的笔盖,他用笔在纸上写下了第一行文字。

令f1,……,fr为关于变量z0,……,zn+r的复系数的齐次多项式。这组多项式在复射影空间CP^(n+r)中定义了一个复代数簇X……

此时X称为一个复完全交,若X的复维数为n,当X是光滑流形时,则称为光滑复完全交,这时X是一个2n维的光滑闭流形……

第一步已经搞定。

陆舟的眼中微微闪烁着兴奋的光芒。

虽然这种感觉很微弱,但他有一种很明显的预感,那便是自己已经找到了一条通往迷宫终点的正确道路。

“以2n维的光滑闭流形为切入点,在复射影空间上建立关联……”

思维上一旦打开了一道突破口,奔腾而出的灵感便如洪水般涌出,挡也挡不住。

一行行如同音符般的算式在他的笔下如奔流不息的江河般倾泻而下,很快一整张草稿纸上已经被密密麻麻的算符