圆球形,这种情况下大于便很自然的开小差了。
可即便如此,大于也依旧准时完成了计算工作,真是恐怖如斯啊
按照原本的历史发展。
大于最快都要在两年半以后才会想到这个问题,眼下这算是直接加速了一个坤坤的成长期了吗.
不过事情既然已经发生了,那么眼下的徐云便没有再迟疑的理由了。
于是他很快正了正身子,对大于说道:
“大于,所以你现在纠结的是对自己的结果不太有信心.或者说不知道用什么物理概念去解释这个数学结果?”
大于飞快的点了点头。
他迟疑的就是这事儿。
数学在很多时候不会说谎,但有些时候数学正确却并无法代表现实也正确。
比如后世的阿库别瑞度规.也就是曲率引擎的解析解。
这玩意儿在数学上已经完美到了无懈可击,但现实里你可曾见到过曲率引擎出现?——p图产生的时空扭曲不算。
还有威腾的理论,这也是个数学完美但物理没有证实的典型。
大于的性子本就极其严谨,更别说氢弹的研制关国家命运,因此这个问题他要是不搞清楚那就不是几天睡不着的事儿了。
随后徐云朝大于做了个淡定的手势,解释道:
“大于同志,如果你是要找我讨论氢弹的具体设计说实话我可能无能为力。”
“但这种聚变截面涉及的是粒子物理情景,所以不瞒你说,我还真了解一些。”
“其实导致这种情况的原因很简单,那就是海对面没有考虑到亚原子粒子所具有的量子效应。”
大于顿时一怔:
“量子效应?”
“没错。”
徐云用力点了点头,说道:
“准确来说,是微观粒子的隧穿效应、波动效应、以及共振效应这三个概念。”
“大于,你刚才说你引入了布莱特维格纳方程,也就是ner方程对吧?”
“那么你肯定也推导出了这个方程的核聚变变式,也就是单能级中子俘获的共振截面是不是?”
大于立马回了声没错,将手中的笔记本往前翻了一页,露出了上头的一道公式:
σγ(ec)σ0ΓγΓe0ec121/1+y2+2Γece0。
徐云见状,暗道了一声果然如此。
大于的这道公式其实不难理解,e0就是质心坐标系中共振峰的能量也就是 ec+Δeb与复合核激发态所匹配的能量,Γ为12共振峰值对应的总能量宽度,σ0是最大的截面,Γγ是辐射俘获宽度。
这算是布莱特维格纳方程的基础变式之一,但更深入的一些物理意义却暂时没被解析出来。
随后徐云想了想,在脑海中过了一遍思路,对大于说道:
“大于,在这个公式的基础上,你先引入量子隧穿,然后想想会发生什么情况?”
“量子隧穿啊”
大于闻言摸了两下下巴,很快开始思考了起来。
量子隧穿。
它是指粒子在经典力学下无法通过能量壁垒,但在量子力学下却有一定概率穿过的现象。
其基本原理是根据量子力学的波粒二象性,粒子可以表现为波的形式,它的波函数可以在势垒外衰减,但是存在一定的概率穿透势垒并进入势垒内部。
在势垒内部,波函数的幅度和相位均受到影响,而在势垒外部,波函数的幅度随距离的增加而指数级衰减,但其相位不变。
当粒子遇到能量势垒时,根据波函数的性质,其波函数会在势垒内部反射和透射。
即使是在能量低于势垒高度的情况下,粒子也有一定概率穿过势垒并出现在势垒另一侧。
这种