,方便针对性进行调整。反馈可以直接用于指导向量知识库的更新和优化。不断地测试来完善我的专业领域大模型。最后一部分是我本次研究的总结。首先创建了一个能被大语言模型直接调用的专业知识库,在电力LCA这个专业性较高的领域填补了大语言模型的空白。其次是采用RAG技术,将知识库,联网与大语言模型相结合,增强了大语言模型在特定领域的可信度和实用性。最后就是本次研究虽然是针对电力LCA领域,但其背后的构架适用于各个领域,构建了一个完整的体系,可以进行修改,全方面的辅助大语言模型,应用广泛。以下就是我的全部研究内容请各位老师批评指正。
3.3.2 数据预处理
Unstructured 库是一个强大的工具,专为处理非结构化数据设计,具体流程如图 3.7 所示,
如从文本文档、PDF 文件或网页中提取数据。它支持多种数据提取方法,包括正则表达式匹配、自
然语言处理(NLP)技术等。
数据预处理步骤如下:
步骤一:数据清洗
去除杂质:从文本中去除无关的字符,如特殊符号、空白行等。
格式统一:将所有文本统一为相同的编码格式,通常为 UTF8,以避免编码错误。
语言标准化:统一不同术语的使用,例如将所有photovoltaic统一替换为PV,确保术语的
一致性。
步骤二:信息提取
关键信息标识:标识文献中的关键信息,如研究方法、主要结论、实验条件等。
数据分类:根据信息类型将数据分类,如作者、出版年份、研究结果等。
步骤三:结构化转换
结构化处理:将信息精细化拆解与清洗,将各种元素进行转换,形成结构化数据形式,拆分成
标题与内容。
分割部分关键代码:
对于其中的每个元素,如果是&nsiteElent 类型,就提取其中的文本并将其添加到
textlist 中;如果是 Table 类型,就将表格的文本表示(可能是 HTML 格式)添加到
textlist 中。
将图 3.8 的提取的数据进行拆分,添加到 textlist 中,输出结果如图 3.11 所示。
非结构化文本数据通常非常稀疏,即包含大量的词汇但每个文档只使用其中的一小部分。而结
构化数据则可以通过合并相似信息来降低数据的稀疏性,这有助于生成更加紧凑和有效的嵌入向
量。
结构化数据可以实现更高效的特征提取。结构化数据通常已经按照特定的模式或结构进行了组
织,这使得我们可以更加高效地从中提取有用的特征(如标题、作者、摘要、关键词等)。这些特
征可以作为后续&n 的输入,帮助生成具有更强区分性和泛化能力的嵌入向量。结构化数据
中的元素(如主题、类别、属性等)通常具有明确的含义,这些含义可以在&n 过程中被保
留下来。因此,基于结构化数据的嵌入向量往往具有更强的解释性,有助于我们更好地理解模型的
预测结果和内部机制。
<