第二百九十八章 泛函分析(2 / 2)

以说,台下这将近一百号人,刚在认真听完青年报告内容的,根本没有几个。

青年的神色有些尴尬和窘迫。

他呆立在台上,不知道接下来该怎么做。

就在青年满脸死灰,迈步准备下台的时候,忽然见到会议室最后排,一只手缓缓举了起来。

“我有问题!”

顾律并不算多么响亮的声音在寂静的会议室内回荡。

众人疑惑的扭头望着身后。

接着便见到一个戴着口罩和眼镜,头上还戴着一顶鸭舌帽的青年从会议室最后排站起来。

这是谁?

不少人心中疑惑。

打扮的这么严实,还坐在会议室最后面。

不会是偷偷混进来的吧!

可是不应该啊!

会议大楼入口处的检查有多严格众人不是不清楚,没有证件的话,基本上是不会放行的。

众人一时间被打扮奇特的顾律吸引了注意力。

而站在台上的那位青年,宛若是抓住了救命稻草一般,满眼感激的望着顾律。

青年不指望顾律可以提出什么高质量的问题。

只求有人可以缓解他目前尴尬的处境。

青年连忙让侍者将话筒递到顾律手中。

顾律接过话筒。

青年深吸一口气,紧张的开口问道,“你有什么问题?”

顾律微微一笑,“我想问的问题,是有关你最后提出的三个定理中的定理三。”

“定理三?”青年微微一愣。

青年提出的定理三的具体内容是这样的∈h00,φ是单位球→∈h(∞,z|a|φz|<∞

这就是青年所述的定理三的全部内容。

在青年看来,这只是一个普普通通的结论性定理而已,没有什么特别之处。

青年不清楚顾律为什么要问这个。

顾律当然不清楚青年内心中的疑惑。

他只是单纯的想把内心中的那个想法说出来而已,“在得出这个定理的时候,难道你没有觉得,这个定理和有界算子有很大的关联之处吗?”

“有界算子?”

“没错,就是有界算子!”顾律语气笃定。

有界算子,可以说是泛函分析领域最热门的研究方向,没有之一!

青年搞不懂他这个定理为什么回和有界算子扯上关系。

他研究的明明是紧算子啊!

幸好,顾律及时解答了青年内心中的疑惑。

“你可以通过紧算子的定义,取f1的情况,这样的话,就很容易的可以得出g,φ和g的有界性,这是第一步。”

顾律竖起第二根手指,笑着缓缓开口。

中的任意有界序列fk,得出一个在b的紧子集上一致的有fk→0,则……”